- 19. The invisible input as recited in claim 18 wherein the top face of the frame is the ground reference.
- 20. The invisible input as recited in claim 16 wherein the electrical signal is used to command a button signal.
- 21. The invisible input as recited in claim 16 wherein the frame is made of metal.
- 22. The invisible input as recited in claim 16 further comprising supports disposed between the top face and the interior wall.
- 23. The invisible input as recited in claim 16 further comprising
  - a second capacitive reference on an inner surface of the top face adjacent to the first capacitive reference; and
  - a second capacitor plate disposed on a surface of the interior wall opposite to the second capacitive reference;
  - wherein the deformation causes a change in capacitance between the second capacitive reference and the second capacitor plate that is detected by the capacitive sensor and converted to a second electrical signal;

- wherein a relationship between the electrical signal and the second electrical signal indicates a location of the object.
- 24. The invisible input as recited in claim 23 wherein the location of the object controls a continuous output associated with the invisible input.
- 25. The invisible input as recited in claim 24 wherein the intensity of the continuous output varies from zero to one hundred percent.
- 26. The invisible input as recited in claim 23 wherein the location of the object commands a tracking function.
- 27. The invisible input as recited in claim 16 wherein the invisible holes form a hole pattern indicative of the button function.
- 28. The electronic device with an invisible input as recited in claim 16 wherein the invisible holes have a diameter ranging between  $20~\mu m$  and  $80~\mu m$ , inclusive.

\* \* \* \* \*